

MANUAL DISPLAY SEY-DL6

IÇAMENTO E MOVIMENTAÇÃO DE CARGA

SUMÁRIO

Sumário	2	
Introdução	4	
Instruções de segurança	4	
Dados técnicos	5	
Nomenclatura	5	
Dimensões	6	
Instalação	6	
Ferramentas	7	
Instalação	7	
Programação	8	
Tara	9	
Calibração	10	
Ajuste dos relés	11	
Comunicação	13	
Filtro	13	
Valores negativos	14	
Ajuste do inclinômetro	14	
Configurações de fábrica	16	
Controle remoto	17	
Equipamento	17	
Certificado	18	
Anatel	18	
Operação	18	
Protocolo CANBus	18	\prec
Resistência do terminal CAN	19	

Interface CAN			19	
Envio PDO (TPDO1)			19	
Tipos de comunicação P	DO		20	
Solicitação especial co	om mensagem de solicitação	de transmissão remota (RTR)	20	
Modo de operação cío	lica		20	
Registro de objeto			20	
Registro de objeto				
Seção específica do di	spositivo		21	
Seção específica do fa	bricante		22	
Temperatura do dispo	ositivo (5000h)		24	
Salvar parâmetros (10	10h) e restaurar (1011h)		24	
Heartbeat			25	
COB ID				
Manutenção			26	
Periodicidade			27	
Carantia				
Garantid	• • • • • • • • • • • • • • • • • • • •	••••••••••••••••••		

INTRODUÇÃO

O display SEY-DL6 é utilizado para mostrar e limitar o peso içado pelo equipamento. Dessa forma evita acidentes de trabalho e danos a bens materiais. Esse display deve trabalhar em conjunto com uma célula de carga para recebimento do peso.

Esse equipamento tem a possibilidade de acompanhar controle remoto, facilitando a calibração a distância.

O display SEY-DL6 é equipado com 6 LEDs de 7 segmentos, botões externos para programação, 3 relés NA e duas opções de alimentação (24~36Vcc ou 85~265Vca autoajustáveis). A alimentação deve ser escolhida antes da compra do display.

INSTRUÇÕES DE SEGURANÇA

O display SEY-DL6 foi feito para aumentar a segurança dos processos de içamento de carga evitando sobrecargas e afrouxamento do cabo de aço do equipamento. Para manter a segurança da operação e a utilização do display deve seguir os passos abaixo:

- Desligue a alimentação do equipamento durante instalação, manutenção ou serviços;
- Parametrizar os relés para acionamento e corte do movimento (subida) com carga menor que a capacidade nominal do equipamento;
- Utilizar os EPI's adequados para o serviço;
- Realizar teste de funcionamento em bancadas;
- Alimente o sistema com tensão indicada;
- Evite situações perigosas;
- Programe o parâmetro de peso com a carga estabilizada;
- Não molhe a placa interna;
- Não abra o equipamento;
- Não utilize nenhum produto que possa danificar componentes eletrônicos;
- Proteger os cabos de esmagamento ou rompimento;
- Não mantenha partes elétrica exposta;
- Não toque em partes elétrica exposta;
- Manutenção, instalação ou serviços devem ser realizados por profissional qualificado e autorizado;
- Antes de qualquer intervenção no equipamento tome todas as medidas de segurança necessárias.

4

DADOS TÉCNICOS

Características	Descrição
Alimenteeñe	85~265Vca
Aimentação	24~36Vcc
Corrente de consumo	≤ 350 mA
Relés	3 (NA) – 10A
IP	66
Temperatura de operação	-20~65ºC
Display	6 dígitos LED 7 segmentos
Botões	3
Comunicação	CANBus

TABELA 1 – CARACTERÍSTICAS TÉCNICAS

Nomenclatura

FIGURA 1 - NOMENCLATURA DO DISPLAY

DIMENSÕES

INSTALAÇÃO

A instalação desse equipamento deve ser feita em um local onde o operador tenha visão dos valores do display. Normalmente deve ser instalado no dispositivo móvel para que não seja necessário barramento/festoon e que o SEY-DL6 se movimente junto ao equipamento.

A Figura 3 apresenta a descrição do display e suas partes, além, da função de cada via de cabo. O equipamento tem duas saídas de cabos, um para alimentação e relés e o segundo para entrada da célula de carga e comunicação.

Os 3 botões para configuração também se encontram do lado de fora do display garantindo a vedação de líquido e objetos sólidos.

FIGURA 3 - DESCRIÇÃO DO DISPLAY

- 1. Display 6 dígitos de 7 segmentos;
- 2. Botões:
 - 2.1. Direita Transição de menu e aumento dos valores;
 - 2.2. Enter Entrar e confirmar os menus;
 - 2.3. Esquerda Transição de menu e diminuir os valores.
- 3. Cabo de célula de carga e comunicação:

- 3.1. Cabo 1 EXC-;
- 3.2. Cabo 2 EXC+;
- 3.3. Cabo 3 SGN-;
- 3.4. Cabo 4 SGN+;
- 3.5. Cabo 5 TX;
- 3.6. Cabo 6 RX;
- 3.7. Cabo 7 GND;
- 3.8. Cabo 8 CAN L;
- 3.9. Cabo 9 CAN H;
- 3.10. Cabo 10 Sem conexão.
- 4. Cabo de alimentação e contato de relés
 - 4.1. Cabo 1 85~265Vca;
 - 4.2. Cabo 2 85~265Vca;
 - 4.3. Cabo 3 24~36Vcc;
 - 4.4. Cabo 4 24~36Vcc;
 - 4.5. Cabo 5 COM relé 1;
 - 4.6. Cabo 6 NA relé 1;
 - 4.7. Cabo 7 COM relé 2;
 - 4.8. Cabo 8 NA relé 2;
 - 4.9. Cabo 9 COM relé 3;
 - 4.10. Cabo 10 NA relé 3.

Ferramentas

Para instalar o SEY-DL6 são necessárias algumas ferramentas como:

- Chave Allen 2,5mm;
- Parafuso Allen cabeça cilíndrica M3 (incluso);
- Chave Allen 5mm;
- Parafuso Allen cabeça cilíndrica M6 (incluso);
- Parafuso M6 (não incluso);
- Chave para parafuso M6;
- Broca aço rápido 5-5,5mm;
- Macho M6.

Instalação

A instalação do equipamento é dividida em três partes, a primeira que é a fixação, a segunda que é a ligação de cabos e a última que é a configuração de cargas e relés.

7

Para a fixação do equipamento siga os passos abaixo:

- Realize a furação da estrutura com a broca de aço rápido conforme as medidas do suporte do display SEY-DL6;
- Faça a rosca no furo utilizando o macho M6;
- Faça a fixação dos suportes do display na estrutura utilizando os parafusos M6 (não incluso);
- Faça a fixação do display nos suportes utilizando o parafuso Allen cabeça cilíndrica M6 (incluso);
- Ajuste o ângulo de visualização desejado e utilize o parafuso Allen cabeça cilíndrica M3 (incluso) em um dos 3 furos do suporte para evitar sair do posicionamento.

Após finalizar esse último passo o equipamento estará fixado, sendo necessário realizar a ligação

dos cabos seguindo os passos abaixo (fazer a conexão dos cabos conforme Figura 3):

- Ligar a célula de carga. É sugerido soldar os condutores (cabo de cobre) para melhor contato;
- Ligar os relés em série com o movimento no painel (contator, relé, etc);
- Ligar a alimentação do sistema.

PROGRAMAÇÃO

Para acessar a programação dos parâmetros do SEY-DL6 é necessário utilizar os botões de acesso.

- Pressione o botão Enter por 3 segundos;
- Navegue pelos parâmetros pressionando os botões Direita/Esquerda. Na Tabela 2 é apresentado a lista de parâmetros disponíveis no display;
- Os botões Direita/Esquerda também são responsáveis por aumentar ou diminuir, respectivamente, os valores;
- Durante a mudança dos valores, pressione o botão Enter para selecionar o dígito. O
 mesmo vai piscar mais rápido e pode ser aumentado ou diminuído pressionando os
 botões Direita ou Esquerda. Ao finalizar pressione o botão Enter novamente para que
 pisque na velocidade normal.
- Após realizar a mudança dos valores pressione o botão Direita até chegar a tela "yEs no", onde "yES" deve ser selecionado para salvar a informação ou "no" para cancelar os valores. Pressione Enter para definir a resposta;
- Para retornar ao menu dos parâmetros pressione Enter em "ESC";
- Caso não tenha nenhuma atividade no display durante 10 segundos retornará para a tela principal.

Parâmetros	Descrição	
1234	Tela principal onde é mostrado o valor do peso içado.	
SELECt	Utilizado para selecionar a calibração com peso ou parâmetros da célula de carga (deixar em CAL ib).	
tArE	Função de tara. Sem peso no moitão.	
CAL	Função de peso conhecido. Adicionar no display o peso que será içado no moitão.	
rL-Out	Configuração do acionamento dos relés.	
Con	Configuração das opções de comunicação (CANBus e RS-232)	
oPtion	Parâmetro de filtro do peso içado.	
[-]	Parâmetro para o display aceitar valores negativos (menores que zero).	
rALSEt	Parâmetro para inclinômetro SEY-INC-24D220A	
tESt	Teste do equipamento. Esse parâmetro não está disponível para o cliente.	
rEturn	Retorno dos parâmetros de fábrica.	
ESC	Sair dos parâmetros.	

TABELA 2 - LISTA DE PARÂMETROS

Tara

Para uma medição de peso precisa, as cargas constantes que afetam o sistema devem ser ignoradas. Portanto, o gancho deve ser colocado em contato com o solo para eliminar o balanço. O parâmetro de Tara é a referência de zero do sistema. Antes de utilizar o display limitador deve ser feito a referência de zero (Tara) e a calibração.

- Quando a opção "tArE" está ativa no menu, pressione o botão Enter;
- Quando este processo é bem sucedido, a mensagem "dOnE" é exibida na tela e o menu é retornado;
- Em casos instáveis, o aviso "PLEASE rEtry" é exibido na tela e o menu é retornado. É necessário repetir o processo.

Calibração

A calibração deve ser feita no parâmetro "CAL" após a realização correta do procedimento de Tara. A calibração é a referência de peso conhecido para o sistema. Para realizar o processo corretamente nesse parâmetro siga os passos abaixo:

- Realize o içamento do peso conhecido;
- Espere até que o peso se estabilize;
- Pressione Enter para entrar no parâmetro "CAL";
- Pressione o botão Direita ou Esquerda para navegar nos dígitos do display;
- Pressione Enter para que o dígito seja selecionado (começa a piscar rápido);
- Pressione o botão Direita ou Esquerda para aumentar ou reduzir o valor do dígito;
- Pressione Enter novamente para confirmar o valor do dígito;
- Deve ser colocado o peso conhecido no gancho e no display;
- Pressione o botão Direita ou Esquerda até a tela "yEs no" e selecione "yES" para salvar o peso ou "no" para cancelar o processo;
- Quando este processo é bem sucedido, a mensagem "dOnE" é exibida na tela e o menu é retornado;

FIGURA 4 – CALIBRAÇÃO (CAL)

Ajuste dos relés

O equipamento dispõe de 3 relés ajustáveis para limitar os valores de peso içados. Os relés podem ser ajustados com valores positivos ou negativos. Cada relé tem uma saída NA podendo ser programado para iniciar como NF ao ligar o display.

- Em "rL-Out" pressione o botão Enter para entrar no parâmetro;
- Os relés são determinados pelos submenus "rELAy1", "rELAy2" e "rELAy3";
- Selecione o relé que será programado e pressione o botão Enter para acessar o submenu;
- Pressione o botão Direita ou Esquerda para navegar nos dígitos do display;
- Pressione Enter para que o dígito seja selecionado (começa a piscar rápido);
- Pressione o botão Direita ou Esquerda para aumentar ou reduzir o valor do dígito;
- Pressione Enter novamente para confirmar o valor do dígito;
- Deve ser colocado o valor do peso em que será acionado/desacionado o relé;

O parâmetro "Percnt" é o percentual dos limites parametrizados nos relés, ou seja, quando atingir o valor do percentual será acionado/desacionado o relé. Abaixo o exemplo do cálculo.

Se o parâmetro "Percnt" estiver configurado com o valor "0.25000" e "rLEAy1" ajustado com o valor "1000"kg, quando atingir "250"kg no display o "rLEAy1" será acionado/desacioado.

Valor do relé × percentual = peso que aciona/desaciona relé

1000 × 0,25000 = 250kg

O relé 1 será ativado quando o valor do peso for de 250kg.

FIGURA 5 - RELÉS (RL-OUT)

Obs: Todos os relés são influenciados pelo parâmetro percentual.

O status do relé (inicia NA ou NF) é programado pelo parâmetro "StAtE". Cada relé pode ser programado independente. Para programar essa função siga os passos abaixo:

- Acesse o submenu "StAtE1", "StAtE2" ou "StAtE3" pressionando o botão Enter;
- Selecione "on" para que o relé inicie NF (antes de atingir o peso programado);
- Selecione "oFF" para que o relé inicie NA (antes de atingir o peso programado);
- Pressione o botão Enter para selecionar a opção desejada.

Ao finalizar a parametrização pressione o botão Enter na opção "ESC".

Comunicação

O equipamento disponibiliza comunicação CANBus e RS232. A configuração de comunicação é feita no menu "COn". O dispositivo deve ser reiniciado para que as mudanças sejam aceitas. Após selecionar o protocolo de comunicação que será usado, selecione "on" na tela "on oFF". O valor de Baud será determinado na próxima tela. O valor "nodE id" do protocolo CANBUS deve ser diferente do ID dos outros dispositivos da linha CAN. No parâmetro "AddrES" é visualizado o ID do controle remoto.

Nesse parâmetro é possível configurar a comunicação com display repetidor de sinal, com a intensão de apresentar os valores do SEY-DL6 em outro dispositivo como o SEY-DRS6.

FIGURA 6 - COMUNICAÇÃO (CON)

Filtro

Esse parâmetro é usado para aumentar ou diminuir a precisão dos pesos medidos. Como esse menu afeta diretamente o valor do peso apresentado no display e causar erros indesejados esse parâmetro não deve ser configurado sem o auxílio de um técnico Seyconel. Caso tenha sido

R6

mexido por pessoa não autorizada pode retornar as configurações de fábrica conforme página 17.

Valores negativos

É utilizado para exibir valores abaixo de zero. Esse parâmetro deve ser habilitador quando for utilizar o relé de cabo frouxo. Se estiver em "oFF", o valor negativo não será exibido. Se estiver em "on", a tela mostrará valores negativos. Quando este parâmetro for habilitado também aparecerá a opção de valores negativos no menu de relés ("rL-Out").

FIGURA 7 - VALORES NEGATIVO

Ajuste do inclinômetro

O display SEY-DL6 foi desenvolvido para se comunicar e programar o inclinômetro SEY-INC-24D220A da Seyconel. Nessa conexão é possível realizar a leitura dos ângulos em tempo real, programar os limites de ângulos, resetar o inclinômetro, alterar o ID e apresentar os ângulos na tela principal do display (revezando com o peso).

Para realizar essa comunicação é necessário a conexão do display com o inclinômetro pela comunicação CAN dos dois equipamentos. Após realizar a conexão dos cabos deve habilitar o parâmetro CAN (Figura 6) do display e realizar as configurações conforme Figura 8.

- Em "rALSET" pressione o botão Enter para entrar no parâmetro;
- Os limites dos ângulos são determinados pelos submenus "AnG-1" e "AnG-2". Pode ser configurado de 1 a 20 para cada ângulo. O ângulo 1 é referente ao valor de X e o ângulo 2 é referente ao Y;
- Selecione o ângulo que será programado e pressione o botão Enter para acessar o submenu;

- Pressione o botão Direita ou Esquerda para navegar nos dígitos do display;
- Pressione Enter para que o dígito seja selecionado (começa a piscar rápido);
- Pressione o botão Direita ou Esquerda para aumentar ou reduzir o valor do dígito;
- Pressione Enter novamente para confirmar o valor do dígito;
- Deve ser colocado o valor do ângulo que em que será acionado/desacionado o relé do inclinômetro;
- Em "OFFSET" pressione o botão Enter para redefinir os ângulos;
- Em "AnGLES" pressione o botão Enter para visualizar os valores dos ângulos em tempo real;
- Em "diSP" pressione o botão Enter para entrar no parâmetro e escolher "yES" para que apareça o peso e o ângulo de forma revezada (horas um, horas outro) na tela inicial do display ou "no" para mostrar apenas o peso içado. O tempo de revezamento é definido no parâmetro "dELAy";
- Em "dELAy" pressione o botão Enter para entrar no parâmetro e selecionar o tempo em que irá ocorrer a troca dos valores no display quando selecionado "yES" em "diSP";

Ao finalizar a parametrização pressione o botão Enter na opção "ESC".

FIGURA 8 - INCLINÔMETRO

Configurações de fábrica

Utilizado para retornar os parâmetros aos valores de fábrica. Se a opção "yES" for selecionada, as configurações de fábrica serão restauradas.

FIGURA 9 - CONFIGURAÇÃO DE FÁBRICA

CONTROLE REMOTO

Equipamento

O controle remoto é utilizado para o acesso remoto ao display SEY-DL6 para ajustes dos parâmetros. Com o controle remoto, os equipamentos disponíveis são escaneados no ambiente e conectados automaticamente ao display do conjunto.

FIGURA 10 - CONTROLE REMOTO

Certificado

O produto deste manual segue o regulamento Anatel sobre equipamentos de Radiocomunicação de Radiação Restrita (Resolução nº 680):

"Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados".

Anatel

O controle remoto do display SEY-DL6 é certificado pela Agência Nacional de Telecomunicações (ANATEL) para comercialização nacional. A numeração da autorização é fixada na carcaça do equipamento pelo selo da Figura 11.

FIGURA 11 - ETIQUETA ANATEL

OPERAÇÃO

O equipamento deve trabalhar junto com uma célula de carga para que o sensor envie os sinais de peso que o cabo de aço é submetido. Também pode ser utilizado junto a um display repetidor para que apresente os mesmos dados no segundo display.

O SEY-DL6, se instalado corretamente, é responsável por limitar os movimentos de subida e descida da talha com seus relés internos e apresentar o valor aproximado do peso içado pelo moitão.

O equipamento acompanha protocolo CANBus para comunicação com o display repetidor ou outros dispositivos.

Protocolo CANBus

A fim de utilizar o protocolo CANBus os terminais CANH e CANL devem ser conectados no barramento de comunicação.

R6

Resistência do terminal CAN

Os displays SEY-DL6 não acompanha a resistência nos terminais. Para a utilizar diferentes equipamentos no barramento CAN é necessário a utilização de resistores (120 ohms) no início e fim da linha conforme Figura 12.

Interface CAN

Envio PDO (TPDO1)

Cada dispositivo tem um quadro de dados de Envio de Objeto de Dados do Processo (Process Data Object = PDO) que consiste em 8 Bytes de dados. Esse quadro contém informações do peso em tempo real e informações do status dos relés.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Peso			Indisponível	Indisponível	Indisponível	Indisponível	Status do relé

 TABELA 3 - 180 + NODE ID TPDO1 QUADRO DE DADOS

Exemplo de mensagem de quadro TPDO

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
E2	04	00	00	00	00	00	01

TABELA 4 - EXEMPLO DE MENSAGEM DE QUADRO TPDO

R6

Peso = 0x0004E2 (1250kg)

Status do relé = 0x01 Relé 1 foi ativado por conta do limite de 1000 kg excedido

Tipos de comunicação PDO

Solicitação especial com mensagem de solicitação de transmissão remota (RTR)

Uma solicitação pode ser enviada para TPDO1 a qualquer momento pela mensagem de solicitação de transmissão remota. Pode ser usado em todas os modelos de operação do display.

Modo de operação cíclica

Se o parâmetro 1800h / 05h (intervalo de tempo em milissegundos) contiver um valor maior que 0, o envio cíclico de TPDO1 é habilitado. Para isso, o parâmetro 1800h / 02h (tipo de transmissão) deve conter o valor 254 (assíncrono, específico do fabricante). No modo "Operação", o display envia o quadro TPDO1 em intervalos específicos do tempo cíclico.

Registro de objeto

O registro de objeto no display é dividido em três partes (parâmetro de comunicação, seção de especificação de fábrica, seção de especificação do dispositivo). Parâmetros disponíveis podem ser lidos e escritos via SDO padrão e index/sub-index. Os parâmetros modificados são efetivados imediatamente, exceto para os parâmetros Node ID (3000h / 01h) e faixa de Baud (3000h / 02h). O parágrafo seguinte mostra a descrição de todos os parâmetros o registro de objeto do display, incluindo index, sub-index, tipo de dado, direitos de acesso e valores padrões (configurações de fábrica). A coluna de registro define se um parâmetro pode ser armazenado no buffer de memória interna não volátil.

Registro de objeto

Seção específica do dispositivo

Index	Sub-index	Parâmetro	Tipo de dado	Acesso	Padrão	Registro			
6500h		Peso (Utilizado para mostrar informação do peso)							
	0	Número de entradas	UNS8	RO	1	х			
	1	Peso	INT32	RO					
6502h	Saída d	e relés (Utilizado para apres	sentar o st	atus de saí	da de relé)			
	0	Número de entradas	UNS16	RO	4	х			
	1	Relé 1	UNS8	RO	0	х			
	2	Relé 2	UNS8	RO	0	х			
	3	Relé 3	UNS8	RO	0	х			
6510h	Controle c	lo relé (Utilizado para contr	olar a saída	a do relé n	nanualmer	nte)			
	0	Número de entradas	UNS8	RO	2	х			
	1	Relé 1	UNS8	RW	0	х			
	2	Relé 2	UNS8	RW	0	х			
	3	Relé 3	UNS8	RW	0	х			
6600h	Tara e calibra	Tara e calibração (Processo de tara e calibração por meio do barramento CAN)							
	0	Número de entradas	UNS8	RO	2	х			
	1	Definir tara	UNS8	RW	0	х			
	2	Valor de calibração	UNS32	RW	0	х			
	3	Definir calibração	UNS8	RW	0	х			

TABELA 5 - PARÂMETROS DO DISPOSITIVO

Seção específica do fabricante

çao espe	cifica do fabrica	ante					
Index	Sub-index	Parâmetro	Tipo de dado	Acesso	Padrão	Registro	
3000h		Opções CAN (Configuração	de comun	icação CA	N)		
	0	Número de entradas	UNS8	RO	3	х	
	1	Status	UNS8	RW	1	х	
	2	Node ID	UNS8	RW	11	х	
	3	Taxa de bits	UNS16	RW	250	х	
3001h	c	Opções RS232 (Configuração	de comun	icação RS	232)		
	0	Número de entradas	UNS8	RO	2	х	
	1	Status	UNS8	RW	0	х	
	2	Taxa de transmissão	UNS32	RW	115200	х	
3002h	Co	onfigurações RALSET (Config	urações d	o inclinôm	etro)		
	0	Número de entradas	UNS8	RO	6	Х	
	1	Ângulo 1	UNS8	RW	5	х	
	2	Ângulo 2	UNS8	RW	5	Х	
	3	Reset (Offset)	UNS8	RW	0	х	
	4	Node ID	UNS8	RW	1	Х	
	5	Status do display	UNS8	RW	0	х	
	6	Delay	UNS16	RW	10	х	
3003h	Limites dos relés (Valores de limite dos relés)						
	0	Número de entradas	UNS8	RO	5	Х	
	1	Limite relé 1	UNS32	RW	1000	х	
	2	Limite relé 2	UNS32	RW	2000	Х	
	3	Limite relé 3	UNS32	RW	3000	х	
	4	Percentual	UNS32	RW	100000	х	
	5	Estado do relé	UNS8	RW	0	х	

3005h	v	alores negativos (Representa	ação de val	ores nega	tivos)	
	0	Número de entradas	UNS16	RO	1	х
	1	Status	UNS8	RW	0	х
3006h		Contador d	e relés			
	0	Número de entradas	UNS8	RW	4	х
	1	Relé 1	UNS32	RW		Х
	2	Relé 2	UNS32	RW		х
	3	Relé 3	UNS32	RW		х
3007h	Mét	todo de cálculo	UNS8	RW	0	x
3009h		Parâmetros da cé	lula de car	ga		
	0	Número de entradas	UNS8	RW	4	х
	1	Tipo de célula de carga	UNS8	RW		х
	2	Ganho (mV/V)	UNS8	RW		х
	3	Alimentação (V)	UNS8	RW		Х
	4	Capacidade da célula de carga (kg)	UNS8	RW		Х
3400h		Opções de	filtro			
	0	Número de entradas	UNS8	RO	4	х
	1	Atraso	UNS8	RW	100	х
	2	Filtro	UNS8	RW	2	х
	3	Sensibilidade	UNS8	RW	20	Х
	4	Bit	UNS8	RW	4	х
3500h		Sobreca	irga			
	0	Número de entradas	UNS8	RO	5	х
	1	Sobrecarga 1	INT32	RO		х
	2	Sobrecarga 2	INT32	RO		х
	3	Sobrecarga 3	INT32	RO		Х
	4	Sobrecarga 4	INT32	RO		Х

R6

	5	Sobrecarga 5	INT32	RO		Х	
3501h		Cabo fro	ouxo				
	0	Número de entradas	UNS8	RO	5	х	
	1	Cabo frouxo 1	INT32	RO		х	
	2	Cabo frouxo 2	INT32	RO		х	
	3	Cabo frouxo 3	INT32	RO		х	
	4	Cabo frouxo 4	INT32	RO		х	
	5	Cabo frouxo 5	INT32	RO		х	
5000h	Tempera	tura do dispositivo	INT8	RO			

TABELA 6 - PARÂMETROS DO FABRICANTE

Temperatura do dispositivo (5000h)

A temperatura interna do dispositivo é recalculada a cada 500 ms e reescrito no registro do objeto. A temperatura é mostrada em ^oC como valor de 8 bits marcado como complemento duplo.

Salvar parâmetros (1010h) e restaurar (1011h)

Se o parâmetro for alterado no registro do objeto, a alteração terá efeito imediatamente, exceto para o Node ID (3000h / 01h) e taxa Baud (3000h / 02). Os parâmetros alterados devem ser armazenados na memória EEPROM para permanecer ativo após um reset. Escrevendo o valor "salvar" (64616F6CH) para a entrada 1010h / 01, todos parâmetros ativos no registro do objeto são enviados para o buffer de memória. (1011h / 01h) para esta entrada através do parâmetro "carga" (64616F6CH) digitando o fabricante pode ser redefinido para os valores padrão. Portanto, os parâmetros padrão são gravados no buffer de memória não volátil, exceto para Node ID (3000h / 01h) e taxa Baud (3000h / 02h). Após o "reset do aplicativo" (comando NMT) ou um reset de hardware, as alterações tornam-se válidas. Se apenas a "comunicação de reset" (comando NMR) for enviada, apenas as configurações padrão dos parâmetros de comunicação serão válidas.

Nota: Depois dos comandos "salvar" e "carga", deve aguardar aproximadamente um segundo para que os parâmetros sejam armazenados corretamente na EEPROM. Pode levar um tempo

relativamente longo para que os parâmetros do dispositivo sejam armazenados na EEPROM interna.

Heartbeat

Heartbeat é um mecanismo de rastreamento de falha que funciona sem um telegrama RTR. Para isso, o indicador envia ciclicamente uma mensagem Heartbeat contendo o status do dispositivo. O dispositivo mestre pode assistir a essas mensagens. A mensagem de pulsação é ativada quando um valor maior que zero é inserido no parâmetro Tempo de intervalo de Heartbeat (1017h).

COB ID

Os identificadores CAN dos objetos de comunicação são configurados de acordo com a conexão predefinida configurada para cada reset (reset de comunicação, aplicação e hardware) com base no presente NODE ID (3000h). Na Tabela 7 mostra a base de cálculo e os valores padrão. (NODE ID = 11).

Objeto de comunicação	Calculadora COB ID	Valores padrões (NODE ID = 11)
NMT	0h	
SYNC	80h	80h
EMCY	80h + NODE ID	8Bh
TPDO1	180h + NODE ID	18Bh
SDO padrão (cliente > servidor)	600h + NODE ID	60Bh
SDO padrão (servidor > cliente)	580h + NODE ID	58Bh
Heartbeat	700h + NODE ID	70Bh

TABELA 7 - COB ID

MANUTENÇÃO

Abaixo a lista de possíveis falhas e correções que podem ocorrer durante a utilização do display SEY-DL6.

Falha	Descrição	Solução	
Equipamento não liga	Equipamento não liga	 Sem alimentação; Conexão da alimentação incorreta. 	
Sem variação de carga	Equipamento não apresenta variação de peso mesmo içando carga	 Célula de carga mal conectada. 	
Valores negativo	Equipamento apresentando valores negativos ao içar uma carga	 Célula de carga com conexão invertida. 	
Relés não acionam	Relés não acionam quando atinge a capacidade desejada	 Realizar a programação de limite de peso do relé; Realizar a programação de lógica do relé. 	
Comunicação RS-232/CAN	Comunicação RS-232/CAN não está funcionando	 Verificar a conexão dos cabos; Verificar se o Baud está correto; Verificar se o Node ID está correto. 	

Tabela 8 - Falhas e soluções

Quando realizado a primeira calibração, se existir algum problema o display mostrara a mensagem "*please make tare and calibration*". Essa mensagem indicia que pode ter algo incorreto na ligação da célula de carga ou na calibração do display. Enquanto não for corrigido o problema a mensagem continuará aparecendo.

PERIODICIDADE

As manutenções básicas devem seguir a Tabela 9.

Manutenção	Descrição	Período	
Reaperto dos parafusos	Com uma chave de fenda realizar o reaperto de todos os parafusos, principalmente do suporte.	Uma vez ao ano. Conforme vibração do equipamento pode ser feita mais vezes durante o ano.	
Higienização	Realizar a limpeza com pano úmido na parte externa do equipamento.	Uma vez ao ano. Conforme o ambiente pode ser feita mais vezes durante o ano.	
Ligação elétrica	Verificar se a ligação elétrica está correta e bem feita.	Uma vez ao ano.	
Estrutura	Verificar se o equipamento não apresenta nenhum tipo de dano por choques mecânicos	Uma vez ao ano	

TABELA 9 - PERIODICIDADE

GARANTIA

Caso o equipamento precise ser encaminha para manutenção especializada pode ser enviado para a matriz Seyconel ou autorizadas Seyconel.

O display SEY-DL6 tem 1 ano de garantia para defeitos de fabricação contando a partir da data da nota fiscal de compra. Peças, componentes e manutenções realizadas no display SEY-DL6 têm 3 meses de garantia contando a partir da data da nota fiscal de compra/conserto. Verificar as condições de garantia com os vendedores.

Acesse nossos canais de relacionamento:

seyconel.com.br

f)

facebook.com/seyconeloficial

linkedin.com/company/seyconeloficial

seyconel.com.br/artigos

📎 +55 41 3201.8000 🔘 +55 41 99811.8338 @ seyconel@seyconel.com.br